两类强不定问题的无穷多小能量解 10月30日
【摘要】本文主要运用变分法和临界点理论研究了两类强不定问题无穷多小能量解的存在性.通过选取合适的空间并构造适当的泛函,利用了针对于强不定问题的广义喷泉定理的对偶形式得到泛函临界点的存在性,从而建立了强不定问题小能量解的存在性准则.首先介绍了本文研究问题的背景和出发点,以及目前的进展情况,给出了本文要研究的问题,处理问题的思路,和相关预备知识.然后我们研究了如下具有周期外势和凹-凸非线性项的薛定谔方 […]
临界点理论在一类分数阶微分系统中的应用 11月20日
【摘要】本篇博士学位论文主要应用临界点理论研究了一类带Dirichlet边值条件的分数阶微分系统解的存在性与多重性,该类边值问题的应用背景源于稳态分数阶对流扩散方程。全文由如下四部分组成:第一章简述了分数阶微积分的发展历史与所研究问题的物理模型,并简要叙述该问题的研究现状、最新进展、本文的主要工作及相关的预备知识,在本章的最后给出了问题的变分框架。第二章利用山路引理研究了F在无穷远处超二次增长时非 […]
Schr(?)dinger-Maxwell系统解的存在性与多重性 11月14日
【摘要】本博士学位论文应用变分法和临界点理论研究了Schrodinger-Maxwel1系统解的存在性和多重性.全文由五个部分构成.第一章简述问题研究的历史背景,研究现状,最新进展,本文的主要工作,变分法和临界点理论的预备知识以及本文用到的主要工具.第二章利用对称山路定理讨论非线性Schrodinger-Maxwell系统多重解的存在性,我们去掉了已有相关文献的两个基本要求:(i)V(x)正定;= […]
脉冲微分系统与离散Hamilton系统解的存在性研究 07月01日
【摘要】本文主要运用变分法与临界点理论研究了脉冲微分系统与离散Hamilton系统解的存在性和多重性,得到了一些新的结果,很好的改进和推广了已有文献的结果.全文共分三章.第一章简述了研究背景与意义,研究现状,最新进展,本文的主要工作以及一些预备知识.第二章讨论了三类二阶脉冲微分系统边值问题解的存在性和多重性.在第一节我们运用三临界点定理研究了一类二阶脉冲Hamilton系统周期解的多重性,建立了一 […]
Hamilton系统与p-Laplace微分系统周期解和同宿轨的存在性与多重性 07月01日
【摘要】本博士学位论文应用临界点理论的方法和技巧,研究了几类二阶脉冲Hamilton系统与p-Laplace系统的同宿解和周期解,获得了一系列新的解的存在性与多重性结果.全文由四个部分构成.第一章,系统地介绍了所研究问题的历史背景、研究现状和最新进展,并简要地陈述了本文的主要工作,同时给出了本文需要用到的临界点理论的预备知识.第二章,分别利用极小化原理和鞍点定理讨论了一类二阶脉冲Hamilton微 […]
- 分类:期刊论文
- 标签: Hamilton微分系统, p-Laplace微分系统, paperpass论文检测, 中国知网免费入口, 临界点理论, 同宿解, 周期解, 大学德育论文, 毕业论文的格式, 脉冲
- 喜欢:1809
- 阅读全文
基于变分方法的微分方程边值问题解的存在性 05月25日
【摘要】本篇论文主要利用变分方法结合临界点理论研究边值问题解的存在性和多解性.本文共分四章.第一章简要介绍了利用变分方法研究微分方程的历史、研究现状以及一些基本定义和定理.第二章研究两类微分方程边值问题经典解的存在性和多解性.首先在经典的Ambrosetti-Rabinowitz条件下研究了一类二阶脉冲微分方程边值问题解的存在性和多解性,然后在泛函满足Cerami条件时研究了一类二阶脉冲微分方程边 […]